Tarihte matematiksel düşünce ölçme, borç, vergi, astronomi hesapları gibi pratik problemlere çözüm tekniklerinin geliştirilmesiyle başladı. Eski Yunan’da başlayan felsefeyle etkileşimi, matematiği genelleme ve soyutlamalara qürdü.Öte yandan bu genelleme ve soyutlamalar matematiğin kullanım alanını genişletti. Matematik’te genelleme ve soyutlamalara çok rastlanır .Birbirinden farklı görünen çok sayıda probleme tek bir prob-lemin özel durumları olarak bakılabilir . Örneğin üçgenlerin alanlarını tek tek hesaplamaya çalışmaktansa problemi genelleyip üçgenin alan formülünü türet-mek hem daha kolaydır,hem de böylece daha geniş bir uygulama alanı ortaya çıkar.
Günümüzde matematik kendi dinamiğinin yanı sıra başka bilimlerle arasındaki etkileşim nedeniyle de çok hızlı bir gelişme göstermektedir. Bu gelişmenin sonucu matematik içinde çok sayıda dal ortaya çıkmıştır (Analiz,aritmetik;cebir;geometri;istatistik;kümeler kuramı;olasılık kuramı; sayı-sal çözümleme;trigonometri). İlkel dinler incelendiğinde sayma gibi basit görünen bir işlemin oluşmasında toplumlar ancak ilk birkaç sayıya isim koya-bilmişler,gerisini “çok “olarak nitelemişlerdir.Matematiksel düşüncenin ilk adı-mı olan rakamlar ve sayma işlemi ancak ekonomisi düzenli,gelişmiş yerleşik toplumlarda yazı ile birlikte ortaya çıkmıştır.
Antik Çağda ilk önemli matematik merkezi olarak ,İÖ 2000’lerden sonra Babil görülür.Babilliler ekonomik yapılarının gerektiği denklem çözme,kök bulma,alan ve hacim hesaplama gibi tekniklerin yanı sıra astronomiye olan yakın ilgileri nedeniyle Trigonometriyi geliştirdiler.Babil’in matematiğe belki en büyük katkısı 60 tabanlı sayı sistemidir.Sıfır simgesinin de katılmasıyla onlu sisteme çok benzeyen 60 tabanlı sayı sistemi bugün bile açı ve zaman ölçümünde kullanılmaktadır.

Kuramsal matematiğin sonsuz kavramı dışında Eski Yunan matematiğin ilgilendiği iki önemli konu konikler ile astronomiden kaynaklanan küresel geometri problemleri oldu.İÖ 4. yüzyılın sonunda matematikte erişilen düzey ve yetkinlik daha sonra yazılan Eukleides’in ünlü Stoikheia’sı (Elemanlar)ile simgeler.
Kuramsal matematik Antik Çağda Arkhimedes ve Apollonios ile doruğa ulaştı.Konikler konusunda erişilen bulguların önemi ancak 19.yüzyılda izdüşümsel geometrinin gelişmesiyle anlaşılabildi.Arkhimedes ve Apollonios’tan sonra gelişme astronomiden kaynaklanan problemler doğrultusunda oldu. Gezegenlerin yörüngelerinin belirlenmesi ,sayısal tablolar,mekanik aygıtların bulunması ve İS 100 dolaylarında Melenos’un küresel trigonometrideki sonuçları Ptolemaios’un İS 2. yüzyılda astronomide ortaya koyduğu bulgulara temel oluşturdu.İS 4. Yüzyıldan sonra bilim eski bulguların yeniden gözden geçirilmesi ve öğretilmesine dönüştü.Klasikler yeniden yorumlandı,eski kitaplar üzerine yeni tezler yazıldı.Zaman içinde bu hep böyle süregidince Bizans dönemine Yunan matematiğinin yalnızca basit bir özeti kaldı.

Ortaçağda bilim Hindistan’da ve İslam dünyasında yeniden canlandı.Bağdat’ta Abbasi halifesi Mansur’un etkisiyle Yunan bilim yapıtlarının sistematik bir biçimde çevrilmesine girişildi.Hint astronomisinin de etkisiyle Bağdat ilk İslam astronomi merkezi oldu.Matematik ve astronominin bu yeniden canlanışında önemli etkenlerden biri de Bağdat okulundan Harizmi(y. 780-y. 850)oldu.Bu canlanış özellikle trigonometri ve küresel trigonometride Antik Çağdakinin çok üstünde bir gelişme doğurdu.İslam matematik ve astronomi geleneği 1400’lere değin aralıksız sürdü.
İslam biliminin Avrupa’ya yayılması 11. yüzyılda başlar.Bu konuda öncülüğü yapanlar 11. yüzyılda ;İngiliz filozof Bath’lı Adelard ve 12. yüzyılda İtalyan matematikçi Leonardo Pisano’dur.Bu yüzyıllarda Yunan bilim klasikleri Arapça çevirilerinden bu kez Latinceye çevrildi.Bu yapıtlar Rönesans’ın bilim yönünden temelini oluşturdu.
16. yüzyılın ortalarında Kopernik’in astronomi,Vesalius’un anatomi alanındaki bulguları eski klasiklerin yanlışlarını ortaya çıkarmıştı.Matematikte yeni bir çağı müjdeleyen ilk bulgular İtalya’da del Ferro, Cardano,Tartaglia ve Ferrari’nin üçüncü ve dördüncü derece denklemlere çözüm getirmeleri oldu.16. yüzyılın sonlarında Fransa’da Viéte’nin bilinmeyen büyüklükler için harflerle işlem yapması çok hızlı gelişecek olan simgesel cebirin temelini attı.

Newton ve Leibniz’in 17. yüzyılın ikinci yarısında diferansiyel ve integral hesabı bulmaları matematikte çok önemli bir adımı simgeler.Newton’un Philosophiae naturalis principia mathematica (1687;Doğa Felsefesinin Matematik İlkeleri)adlı yapıtı da gelmiş geçmiş en büyük bilimsel yapıt olarak kabul edilir.B u yapıtında kütleçekimi yasasını da ortaya koymuş olan Newton’un temel amacı doğayı anlamaktı; buna karşılık Leibniz bilgiye ve evrensel niteliklere ulaşan yolu açmak istiyordu.Leibniz’in bu amaçla geliştirmeyi tasarladığı simgesel mantık,George Boole tarafından ancak 19.yüzyılın ortalarında ortaya konabildi.Ama onun diferansiyel yöntemi 18. Ve 19. Yüzyıl matematiğinin gelişmesine temel oluşturdu.
18.yüzyıl matematiğinin en önemli adı Leonhard Euler’dir.Değişimler hesabı ve diferansiyel geometrinin kurucuları arasında yer alan Euler,analiz ve sayılar kuramı başta olmak üzere matematiğin hemen her dalına önemli katkılarda bulunmuştur.18. yüzyılın öteki büyük matematikçileri arasında J.-L.Lagrange,J.L.R.d’Alembert,P.-S.Laplace ve G.Monge anılabilir.

TÜRK – İSLAM BİLGİNLERİNDEN EBU REYHAN MUHAMMED BİN AHMED EL-BİRUNİ’NİN HAYATI

1003(Ya da 1009) yılında yeniden Harzem’e dönerek,bilginlere büyük ola-naklar sağlayan Sultan Memun bin el-Memun’un sarayında İbni Sina,İbn Miske-veyh,Ebu Nasr gibi bilginlerle çalıştı.Bu dönemde kendinden on yaş küçük olan İbni Sina ile ısı ve ışık iletimi,maddenin devinimi konularında verimli tartışma-lar yaptı ve yapıtlarında bu tartışmaları açıkladı.Biruni,1017’de Gazneli Mah-mud’un Harezm ülkesini fethetmesinden sonra Gazne kentine yerleşti;gerek Gazneli Mahmud döneminde,gerek Gazneli Mahmud’un oğlu Mesud ve torunu Mevdud dönemlerinde büyük saygınlık görerek ömrünün son yıllarını burada geçirdi.

Nihâyâti’l-Emâkin(“Mekanların sonları”)adlı yapıtı,coğrafyadan,jeoloji ve jeodeziye(Yeryüzü düzlemini ölçme bilgisi)kadar bir dizi konudaki yazıların toplamından oluşmuştur.Sultan Mesud’a sunduğu el-Kanunü’l Mesudi adlı en önemli astronomi yapıtında,Dünya coğrafyası,enlem ve boylam hesapları Dünya çapının ölçümü,Güneş,Ay ve gezgenlerin devinim cetvelleri gibi araştırma ve çalışmalarını toplayan Biruni bilim tarihçilerine göre Kopernik’le başlayan çağ-daş astronominin temellerini atmıştır.Batlamyus ve Aristo’nun kuramlarına kar-şı çıkarak,Dünya’nın durağan değil,dönen bir kütle olduğunu kanıtlamaya çalış-mıştır.
Kitabu’l-Camahir fi Marifeti’l-Cevahir(“Cevherlerin Özellikleri Üstüne”) adlı yapıtında minerallerin ve bazı değerli taşlarının özelliklerini tanıtmış,23 katı ve 6 sıvı maddenin özgül ağırlıklarını bugünkü değerlerine çok yakın olarak sap-tamıştır.Kimi araştırmacılara göre 113,kimi araştırmacılara göre de 180 yapıtı olduğu ileri sürülen Biruni ‘nin ancak 27 yapıtı günümüze kalabilmiştir.Bilim ve felsefe alanındaki çalışma ve araştırmalarında büyük ölçüde İslam düşüncesinin etkisi altında kalmış olan Biruni,evrenin “Öncesiz” olmadığını,bir Tanrı’nın var-lığına gereksinimi olduğunu ileri sürmüştür.Biruni bu savı ile,evrenin “Öncesiz” olduğu düşüncesini savunan İbni Sina’dan ayrılır.Batı’da “Aliboron” adıyla bili-nen Biruni’nin yapıtları birçok Batı diline çevrilmiştir.